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Abstract-The two-dimensional problem of equilibrium of a perfectly elastic body with couple-stresses is
considered. The general form of solution of the problem in the case of an orthotropic medium is given in
Section I. Section 2 shows that there exists a close analogy between the equations governing the behavior of a
plane rectangular lattice composed of rigidly interconnected elastic beams, and the general set of equations of the
two-dimensional couple-stress theory for certain orthotropic bodies. Section 3 contains two problems which
demonstrate the effects of couple-stresses upon the behavior of stresses and displacements in the vicinity of a
circular inclusion and a circular hole in an infinite elastic plane.

INTRODUCTION

THE two-dimensional problem of equilibrium of a perfectly elastic orthotropic body with
couple-stresses is considered. By following the approach suggested by Koiter [1] it can be
assumed that the simplest physical model of such a body is characterized, in the case of
isotropy, by four independent elastic constants E, G, I and '7. E and G are the usual Young's
and shear moduli, I and '7 are two new constants arising through the introduction of
couple stresses. I has the dimension of length and appears to be of microscopic magnitude
for most real materials. The cross-sensitivity constant '7 is dimensionless and has the
value between + 1 and - 1. If the same general approach is followed for the orthotropic
case the number of independent elastic constants should reach 9+ 12 = 21. When con­
sidering either the case of plane stress or plane strain without specifying the elastic constants
associated with the z direction, the number of independent coefficients reduces to six.
In the usual engineering notation these constants can be written Ex, Ey, G, Exy = Ey/vy =
Ex/vx' Ix and ly.

Section 2 of the paper shows that there exists a close analogy between the equations
governing the behavior of a plane rectangular lattice, composed of rigidly interconnected
elastic beams loaded on the boundary, and the general set ofequations (derived in Section 1)
of the two-dimensional couple-stress theory for certain orthotropic bodies. This analogy
also adds clarity to the physical meaning of the two characteristic lengths Ix and ly.

Section 3 contains two problems which demonstrate the effects of couple-stresses.
The first problem involves investigating the stress concentration around a rigid circular
inclusion in an infinite elastic plate subject to simple compression in one direction. The
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second problem is concerned with the displacement and stress distribution around a
circular hole in an infinite elastic plate when the boundary of the hole is subject to a torque.
In both problems the influence of couple-stresses is quite significant, though limited to
the immediate vicinity of the inclusion or hole, A more detailed discussion of these problems
can be found in the unpublished paper [6].

1. PLANE COUPLE-STRESS PROBLEM

Consider the state of equilibrium in a perfectly elastic body with couple-stresses, The
general set of equations governing the problem for the case of vanishing body forces and
body couples, as given by Koiter [1], can be reduced to

(a) three equations of equilibrium

(b) fifteen strain-displacement relations

(1.1)

Yij = u(i,j)'

(c) fifteen stress-strain relations

aw
sij = ~a '

Yij

(1.2)

(1.3)

(d) five boundary conditions for each point of the boundary, expressed in either stresses
or displacements.

The following notation (basically the same as found in Ref. [1]) is introduced here,
sij = u(i,j)-the symmetric part of the generally non-symmetric force-stress tensor u ij ;

mij = J1ij - 1J1kkJ ij--deviatoric part of the couple-stress tensor J1ij;

ui--eomponents of the displacement vector;
Yij--eomponents of the strain tensor;
Wi = teijkUk,j--eomponents of the rotation vector;
xij--eomponents of the torsion-flexure tensor;
W = W(Yij, xi)-strain energy function (homogeneous quadratic function of the

deformation variables Yij and Xi);
eijk-permutation symbol and Jij-Kronecker delta.
The system of equations (1.1), (1.2) and (1.3), in the particular case of a two-dimensional

problem, reduces (see Ref. [2] by Mindlin) to the following set of equations.
(a) Two equations of equilibrium

Sxx,x+ Sxy,y +1(mxz ,x +myz,y),y = 0,

SXy,x+Syy,y-t(mxz,x+myz),x = 0;

(b) three compatibility conditions

(1.4)

(1.5)
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(c) Five stress-strain relations obtained as a result of the assumption that the strain
energy function has the form

w_ 1( Ex 2 Ey 2) Exv y
- 2" 1- v v Yxx + 1- v v Yyy + 1- v V YxxY},yxy xy xy

+Gy;y +2Gl;x;z +2Gl;x;z.

If, in addition, the assumption vx = vy = 0 is made, then

Syy = EyYyy ,

Sxy = 2Gyxy'

mxz = 4Gl;xxz'

myz = 4Gl;xyz ' (1.6)

hence the plane state of stress and plane state of strain become equivalent.
Ifthenotationl1x = 2G/Ex,l1y = 2G/Ey(l1x = l1 y = 1for the isotropic case) is introduced

the stress compatibility conditions, obtained by substituting equations (1.6) into (1.5), can
be written

mxz = 21;(sxy,x-l1xsxx.y),

myz = 21;( - Sxy.y + 11 ySyy,J,

l;mxz,y = l;myz,x'

(1.7)

The couple-stresses (mxz and myz) can be eliminated from the compatibility and equi­
librium equations by substituting from the first two equations (1. 7) into equations (1.6)
and the third of equations (1. 7)

(1.8)

The general solution ofequations (1.8) can be expressed in terms of three stress potentials
Udi = 1,2,3)

(1.9)
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(LlO)

(1.11 )

mx== 2/~[;~(OxPl-OYXU2)+QxP3}

myz = 2/;[aS(OXP1-OYXU2)-QYXU3}

in which the differential operators 0, OXY' L xy , M xy , N Xl' and QXl' are defined as follows:

2 (12 2 a2
0 ( a2

8
2

)o = Ix~+IY-a2' OXY = IJx-;-lJy-,:;-z+;;-z ,ux y uy ex uy

(12 iY a20
L xy = IJY·;.2+2~-lJy";;;-2'ux uy ux

(;2 [ 8
2

]M xy = 8y2 1-0+2(/~-lJyl;)OX2 '

a[ a
2
0 8

2
]N xy = IJx-;- lJ y-;-2--a2 'uy (X Y

C [a 2
8
2 2( 8

4
0

4
8
4)]QXY = -;- ~+lJx-a2 -Iv lJy~+2IJxlJv~z+t/x;:;4 .(.y eX y' uX . uX uy ey

The remaining differential operators can be obtained from (LlO) by interchanging the
variables x and y. When equations (1.9) and (LlO) are substituted into (1.8) the governing
equations for the determination of the stress-potentials become

2 a6 ui 2 2 a6 ui 2 12 86 Ui
lJiX:l6 + lJy(ly + 21JxlJ;:, 4;:, 2 + IJx(lx + 2IJyy);:, 2;:, 4

('x uX ey uX uy

8
6

U. ( a4u· a4u (i4U)
+t/); 8y6'- lJy 8x4 '+2 8x2a.~2+lJx 8y4' = O.

In certain cases a simplified choice of two stress functions <I> and 'l' is more convenient.
For example, if it is assumed that

(Ll2)

(Ll3)

it is easily verified, by simple substitution, that equations (1.12) satisfy the required condi­
tions (1.4) and (1.7) provided that <I> and 'l' are solutions of the following two equations

a(a2
[:2 ) a[ 2 2 a2

2 8
2

]
2Uy"ay ~~z+ IJx ay2 <I> + ax 1+Oy - 21J)x) oy2 -Ix ax 2 'l' = O.

a( (1
2

(1
2

) (1 [ 2 2 8
2

2 c2
]2lxly-;- -;-z+lJy-,:;-z <1>--;- 1+(lx-2IJyly)~-ly---;--Z 'l' = O.

uX uy ex uy (·X cy



On certain two-dimensional applications of the couple stress theory 19

When equations (1.13) are solved simultaneously to separate <I> and '1', equations (1.11)
are once more obtained. Thus, while equations (1.13) are sufficient for the determination
of <I> and '1', the necessary conditions are equations (1.11).

For the isotropic case Ex = Ey = E, Ix = ly = 1, E = 2G and the stresses, in terms of
the potentials, can be written

(1.14)

(1.15)

A simplified version of the stress potentials for the isotropic case, originally introduced
by Mindlin, is obtained by substituting

(1.16)

into equation (1.14),

sxx = $.yy - 'I'.Xy,

Similarly the equations for $ and 'I' become

212\72$ = - ('I' - [2\72'1')
,1 .x'

212\72$ = ('I' -12\72'1'),x ,y

or in the separated form

(1.17)

(1.18)

(1.19)

2. LATTICE ANALOGY

Consider a regular, orthogonal two-dimensional lattice consisting of elastic beams
parallel to the axes x, y of a rectangular coordinate system (Fig. 1). The dimensions of an
elementary rectangle are 2a x 2b, and the cross-sectional areas of the corresponding beams,
their moments of inertia and the Young's moduli are Ax, Ex, Ix and Ay , Ey , I y , respectively.
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Consider first the state of equilibrium of an elementary cross-shaped framework shown in
Fig. 2. Denote by N x' Ny-the normal forces, by VXy and Vyx-the shearing forces, and by
M x and My-the bending moments acting in the horizontal and vertical members of the
element at its center. If the increments of these forces along the arms of the elementary
cross are denoted by symbols .1, the three conditions of equilibrium of the element shown
in Fig. 2 are

.1Nx+ .1 ~'x = 0,

.1Ny+.1Vx}' = 0,

.1Mx+.1My-bVyx+aVX}' = O.

(2.1)

For a reasonably smooth variation of the forces across the element, the increments
.1N, .1V, .1M can be approximately replaced by the first terms of the Taylor power series
expansions of functions N, V, M; for instance

(2.2)

When the expressions (2.2) are substituted into equations (2.1) and each of these equa­
tions is divided by 2ab, the equilibrium conditions of the element shown in Fig. 2 can be
written in the form

iixx.x + ii yx,y = 0,

ii xy.x + iiy,v.y = 0,

mxz,x+myz,y-iiyx+iixy = 0,

(2.3)
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where ii and mdenote the reduced stresses in the lattice element

_ N x
(Jxx = 2h'

(2.4)

The reduced stresses can be decomposed into the symmetric and antisymmetric parts

(2.5)SXl' = Sl'x = -!(iixl'+iil'x ),

rxl' = -rl'x = !<iixl'-iil'x )'

The antisymmetric part rxl' of iixl' can be eliminated from equations (2.3) to yield the
equilibrium conditions in the form

sxx,x+sXl"l'+!<ml'Z'l'+mxz,xl.l' = 0,

Sxl',x + Syy,y --t(myZ,l' +mxz ..Jx = 0,

completely analogous to conditions (1.4) derived for a continuous medium element in
Section 1.

To complete this analogy, the reduced strains yand xhave to be defined. The displace­
ments and slopes of a lattice element (Fig. 3) can be calculated by applying the elementary
formulas of strength of materials and by assuming that the element is composed of four
cantilever beams loaded by axial forces N, transversal forces V and bending moments M.

iM x

a ~)
- Y....xy + ~yx

2 2a

(e)

6M r"'\
y ----llo..~x _ ~y

2 2b

+

v V I'Mv
TYx - ~Y~

Y....xy + .2.Y.yx
2 2a

+

(b)

Y...yx + ~v
.2 2b "

':!...vx + 2Y....Y.v
2" 2b

"'t
V

·"v
yx

illy

t

N~

~
N

Y

(a)

(d) (e)

FIG. 3
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If the influence of the incremental force systems shown in Fig. 3d, e is neglected, the reduced
strains can be defined in the following way.

(a) Reduced normal strain is the average longitudinal strain of the rod (Fig. 3a)

(2.6)

(b) Reduced shear strain is the average value of transversal deflection per unit length
of the perpendicular beams

_ _ !(15XY 15yx )
Yxy - 2 a + b .

Here 15XY ' 15yX are the respective deflections caused by VXY ' ~x

(2.7)

(c) Reduced torsion-flexure strain is the average change of slope per unit length of the
beam (average curvature)

_ My
x yz = E I .

y y

(2.8)

Now, the forces N, V, M appearing in equations (2.6), (2.7) and (2.8) are replaced by the
previously introduced reduced stresses (2.4) and (2.5). The resulting equations, which may
serve as reduced stress-strain relations for an orthogonal lattice, can be written in the form

Sxx = E/}xx, Syy = Ey'iiyy , Sxy = 2Gyxy

nixz = 4Gl;xxz' myz = 4Gl;xyz
(2.9)

in which the constants E, Gand 1are expressed in terms of the mechanical and geometric
characteristics of the lattice elements as follows:

_ EyAy
Ey=~,

(2.10)
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Equations (2.9) are identical with the stress-strain relations (1.6) introduced in Section 1
for a continuous orthotropic medium. This confirms the assumed analogy and proves
than an orthogonal lattice may serve as a good illustration of phenomena occurring in
Cosserat-type continua. Likewise, certain solutions known from the theory of couple­
stresses can serve as approximate solutions for analogous problems concerning two­
dimensional gridworks. In cases when the lattice structure contains a very large number of
elements it can prove to be advantageous to replace the discrete structure by a continuous
Cosserat-type continuum; the analytical solution of the associated couple-stress problem
can be much simpler than the numerical solution of the original set of linear algebraic
equations which results from the usual elementary structural mechanics approach to the
problem.

In connection with the formulae (2.10) it can be observed that in the case of a square net
a x a of identical beams, the associated continuum model does not become isotropic. This
is due to the internal structure of the lattice, and even in the fixed coordinate system x, y
it is seen that for isotropic elastic bodies the relation E = 2G(1 + v) holds, whereas in the
case of a lattice, with v = 0, E = EA/2a, G = 3EI/4a3 and hence, generally E "# 2G.

The scond observation concerns the magnitude of the additional elastic constant 1.
In the case of a square net and equal beam rigidities it follows from equation (2.10) that

Ix = ly = a/J6 = 0·408a

which sheds some additional light on the order of magnitude of I in real bodies characterized
by a certain crystalline or granular microstructure.

3. TWO PARTICULAR CASES

The stress functions <l> and 'P, derived in Section 1 and originally introduced by
Mindlin [2J are employed to obtain the solution of two particular couple-stress problems.
The first problem concerns the influence of couple-stresses on the stress-concentration
around a perfectly rigid circular inclusion in an infinite isotropic plane subject to uniform
compression in the direction of the x-axis (Fig. 4).

All the general formulae derived in Section 1 are transformed to polar coordinates
r = (x 2 +y2)t, () = tan - 1y/x, and the two functions <l>(r, ()) and 'P(r,O) must satisfy the
equations

and the following boundary conditions
(a) Perfect clamping of the plate at the boundary of the inclusion

auk, 0)
ur(r,O) = ue(r,O) = or = 0 for r = a;

(3.1)

(3.2)
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(b) Uniform compression in the x-direction at infinity, therefore for r -+ OC!

Srr = -~(l +cos 2e),

p
S66 = -2(1-cos 2e),

Sr6 = ~ sin 2e.

The stresses, in terms of functions <I> and '1', can now be written

(3.3)

(3.4)

1
m6z = -'I' 6r .

The suitable form of the stress functions for solving the problem under consideration is

Here In and Kndenote the modified Bessel functions of first and second kind and order n,
and Cl' ... ,C6 are constants of integration. These constants are determined from the
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boundary conditions (3.2), (3.3),

C1 = --a2(l-2v)~,

C= -~[(3-2v) tXKo(tX)]£
2 F +2K 1(tX) 2'

C= ~[2 tXKO(tX)]£
3 F + K1(tX) 2'

C = 8(1-V)a
4
[2 tXKO(tX)]£

4 tX2 F + K I (tX) 2'

8(1 - v)a2 Ko(tX)
Cs = -------

tXFKo(tX)K I (tX) ,

in which the notations

F = 2(1-2v)+(3-4v)tXKo(tX)/K 1(tX)

(3.5)

were employed.
The maximum value of normal stress occurs at the ends of the horizontal diameter of

the inclusion, r = a, f) = 0 or 71:.

ax = _£[ -2v 2(3-2V)+tXKo(tX)/K t(tX)]
~ 2 (3 )+ 2(1-2v)+(3 -4v)tXKo(tX)/K t (tX) .

This formula, when compared with the corresponding classical result by Goodier [3J

max P 2(5 - 4v)(1 - v)
(Jrr = -2 3-4v

shows that couple-stresses result in an increase of the stress concentration factor (see Fig. 5).
Ifit is assumed,for instance, that v = t, the classical theory gives the result k = ~ax/p = 1,5,
whereas the couple-stress theory leads to k = 3·75. This increase is contrary to the results
obtained by Mindlin [2J, who found a decrease in the stress concentration factor for
the case of a circular hole in an infinite plane under compression. On the other hand, a
similar increase of stress concentration factors was observed by Muki and Sternberg [4J
and Day and Weitsman [5J at the contact surface between two bodies composed of
different materials. As could be expected, the influence of couple-stresses decreases rapidly
with increasing distance from the boundary of the inclusion.

The second example concerns the problem of an infinite elastic plane loaded by a
torque T applied to the boundary of a circular hole of radius a. Two possibilities are
considered: in the first case the load consists of uniformly distributed tangential forces
t = T /2na 2

; this leads to the well-known, elementary solution. In the second case,
uniformly distributed couples mr = T/2na act along the circular boundary, and the solution
is found with the aid of the couple-stress theory.
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The stress potentials are assumed in the same form for both cases

<f) = CoO,

'P = C t Ko(r/l) +C 2 Io(r/l).

INFINITE PLATE WITH A HOLE
1.0

Loading Around Circumference of Hole

RADIAL DISTANCE VS. TANGENTIAL DISPLACEMENT

- - - - Constant Shear Stress
Constant Couples

Sa

-- -

4a

---

3a2aa
o

Radial Distance (r)

FIG. 5

Since all stresses, in both problems, must vanish as r -+ 00 it follows that C2 = O. The
remaining boundary conditions for the case of uniformly distributed shears are

Urr(a, lJ) = 0,

and for the case of uniformly distributed couples are

Urr(a,O) = O.

Therefore, the non-zero stresses and displacements can be written
(a) in the case of uniformly distributed shear (classical continuum) as

U rO = T/2nr2
,

Uo = - T /4nGr;
(3.6)
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(b) in the case of uniformly distributed couples (Cosserat-type continuum) as

(Jrl! :!-[1-~~(1'/l)J.
2n1'2 a KI(a)

J-[1-~ Kt(!!!1_~ Ko(1'112]
(JOr 2n1'2 a K dlX) la2 K t (a) ,

T Kt(rll)
mrz = - 2na Kt(a) ,

T [1 l' Kt(1'/l)]
Uo = - 4nGr --;; Kt(a) .

(3.7)

---- Without Couple-Stresses
---- Including Couple-Stresses

The first result of interest involves the limiting case I ~ 0 (the transition from the
Cosserat continuum to the classical elastic material). It is noted that the solution for the
second case then becomes identical with the solution of the first case for any l' > a. Hence,
for classical type continuum the solution for l' > a is independent of how the torque is
applied. The result is in marked contrast with what would be expected for Cosserat-type
continua. This difference is most easily vizualized by replacing the Cosserat continuum
by a lattice of the type previously discussed in Section 2 of this paper. Now, it is obvious
that the lattice will respond quite differently depending upon whether it is subject to shear

INFINITE PLATE WITH RIGID CIRCULAR INCLUSION
UNIFORM COMPRESSION ONE DIRECTION

(~) VS. STRESS CONCENTRATION FACTOR
(

\

\ v =- 14

\
3 \

\ \, \

" \" \'-,
v ~ 0 ...... ~2 ,,__

...... -::.::.=:::.::. - - - - - - - - - - - - - - - -
t------------.=..::=-=~~--~=-="'"=_=_=_::_::_---------=-.:-=-=-=-='---- '.' = 01-- -_-_-__-_- ',' =: 1

4

o
o 6

FIG. 6
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forces or bending moments and thus, the solutions would be quite different. These two
solutions also illustrate the difference between the force transmitting mechanisms of the
two types of continua.

A second conclusion can be drawn from the behavior of solutions (2.6) and (2.7) under
the assumption that 0 < I ~ a and r ~ a; then the Bessel functions can be represented
by the first terms of their asymptotic expansions

Kn(r/l) '" (j~)exP-~(~-l).
Km(a/I) r I a

It now follows that retention of the first term of each of equations (3.6) is all that is
required for adequate representation of stresses and displacements for large values of r.
Hence, the solution for the case of uniformly distributed couples in Cosserat-type continua
becomes asymptotic to the uniformly distributed shears problem in a classical medium
for r ~ a; see Fig. 6 for a comparative plot of the displacements for the two cases. This
comparison also further strengthens the previous observation that the effects of couple­
stresses are most prominent in the immediate vicinity of the boundary.

For small values of a/I the above argument does not hold and the deviations between
the two solutions are quite noticeable.
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AficrpaKT-PaCCMaTPHBaeTCli p;ByxMepHali 3ap;a'la paBHosecHli Hp;eaJIbHO ynpyroro TeJIa C MOMeHTHbIMH

HanpBlKeHHBMH. B'IaCTH 1 p;aeTCli o6I.Qall 410pMa peI.QeHHlI 3ap;a'lH P;JIli CJIy'lali OpToTponHoA CpeP;bI. qacTb

2 YKa3bIBaeT Ha TecHyIO aHaJIOrHIO MelKp;y ypaBHeHHBMH, OnHCbIBaIOI.QHMH nosep;eHHe nJIocKoA npllMO­

yrOJIbHoi!: peweTKH, COCTOllI.Qei!: H3 lKeCTKHX, coep;HHeHHbIX ynpyrHx 6aJIOK H o6I.Qei!: CHcTeMoi!: ypaBHeHHi!:

p;ByxMepHoA TeopHH MOMeHTHbIX ypaBHeHHA P;JIli HeKOTopbIX OpTOTponHbIx TeJI. qacTb 3 3aKJIIO'IaeT

p;se 3ap;a'lH, KOTopbIe YKa3YIOT Ha 34141eKTbI MOMeHTHbIX HanplilKeHHi!: H HX nosep;eHHe Ha HanplilKeHHlI H

nepeMeI.QeHHlI B OKpecTHOCTH Kpyroroil: HHKJII03HH H Kpyroro OTsepcTBHlI B 6ecKoHe'lHoil: ynpyroil: nJIO­

CKOCTH.


